Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(8): e104418, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111155

RESUMO

Mammalian spermatogenesis, which takes place in complex testicular structures called seminiferous tubules, is a highly specialized process controlled by the integration of juxtacrine, paracrine and endocrine information. Within the seminiferous tubules, the germ cells and Sertoli cells are surrounded by testicular fluid (TF), which probably contains most of the secreted proteins involved in crosstalk between these cells. It has already been established that germ cells can modulate somatic Sertoli cell function through the secretion of diffusible factors. We studied the germ cell secretome, which was previously considered inaccessible, by analyzing the TF collected by microsurgery in an "integrative omics" strategy combining proteomics, transcriptomics, genomics and interactomics data. This approach identified a set of proteins preferentially secreted by Sertoli cells or germ cells. An interaction network analysis revealed complex, interlaced cell-cell dialog between the secretome and membranome of seminiferous cells, mediated via the TF. We then focused on germ cell-secreted candidate proteins, and we identified several potential interacting partners located on the surface of Sertoli cells. Two interactions, APOH/CDC42 and APP/NGFR, were validated in situ, in a proximity ligation assay (PLA). Our results provide new insight into the crosstalk between germ cells and Sertoli cells occurring during spermatogenesis. Our findings also demonstrate that this "integrative omics" strategy is powerful enough for data mining and highlighting meaningful cell-cell communication events between different types of cells in a complex tissue, via a biological fluid. This integrative strategy could be applied more widely, to gain access to secretomes that have proved difficult to study whilst avoiding the limitations of in vitro culture.


Assuntos
Comunicação Celular , Biologia Computacional/métodos , Células de Sertoli/citologia , Espermatozoides/citologia , Espermatozoides/metabolismo , Testículo/citologia , Animais , Perfilação da Expressão Gênica , Masculino , Mapeamento de Interação de Proteínas , Proteômica , Ratos , Túbulos Seminíferos/citologia , Túbulos Seminíferos/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...